

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Computation Of Frequent Updates For Spatio - Temporal Query

With Safe Zone Using Skr Tree

 Saranraj.G
1

, Mookhambika.N
2

M.E. (CSE) 1, Asst.Proffessor2

Department of Computer Science and Engineering,

Dhanalakshmi Srinivasan College of Engineering, Coimbatore,

ABSTRACT

In reality, spatial objects (e.g., hotels) not only have

spatial locations but also have quality attributes (e.g., star, price).

An object p is said to dominate another one p', if p is no worse

than p' with respect to every quality attribute and p is better on at

least one quality attribute. Traditional spatial queries (e.g.,

nearest neighbor, closest pair) ignore quality attributes, whereas

conventional dominance-based queries (e.g., skyline) neglect

spatial locations. From this FDL (Farthest Dominated Location)

retrieves the results, includes both quality attributes, and spatial

objects with sufficient R-Tree algorithm to retrieve the data. For

each query, location based server need to analyze query point

and what the query needs to analyze from the database is large to

store the data. For this, my project proposes a system include

safe zone. This zone creates a circular zone with range for the

query, location will be analyzed. This project proposes an

efficient index called SKR-tree

1. Introduction

The development of technology has made it possible to

track moving objects such as vehicles, aircrafts, vessels,

wildlife, and human objects such as firefighters in a fire

field. Technologies such as global positioning system

(GPS), radio-frequency identification (RFID), cellular

wireless networks (such as commercial cellular phone

networks) and even triangulated wireless fidelity (Wi-Fi)

networks can all provide location information in real-

time, although at different precisions with different ef-

fective ranges.

Two major trends can be identified to manage the

large amount of location and property information that

varies with time: moving object databases (MOD) and

data stream technology (DST). The first approach im-

plies extending traditional database techniques with

models and index structures suitable to track the loca-

tions of the moving objects efficiently. The second ap-

proach focuses on the processing of continuous location

updates as they arrive. The boundary between these two

approaches is not always clear in relation to the topic of

this survey: Both propose alternatives to classical data-

base techniques, which are not considered appropriate to

manage the continuously changing locations of the mov--

ing objects [1]. Our research will focus on the MOD ap-

proach but can be easily modified to adapt to the DST

approach as well since our Dynamic Interval Based Cir-

cular Safe Region (DIBCSR) algorithm requires the

minimum frequency of location updates which can be

provided by both approaches.

MOD is a system that performs storage management

and query analysis on time-variable spatial information

of moving objects [2-4] which combines multiple disci-

plines and research areas including geographical infor-

mation systems (GIS), spatial databases, spatial-temporal

databases, computer graphics, computational geometry,

artificial intelligence and mobile computing.

Application of MOD requires the optimal efficiency of

the queries which can only be provided by continuous

spatial-temporal queries. A regular spatial-temporal query

only returns a single result set. In contrast, a continuous

spatial-temporal query returns result sets continuously

from the registration to the cancellation of the query,

which is called the effective period of the query. Even if

the query conditions remain unchanged during the effect-

tive period, the query result must be updated continu-

ously due to the continuous movement of the queried

objects. Here are two examples of continuous spatial-

temporal queries which provide commonly used LBS

such as range query or the k-nearest neighbor (kNN)

query:

1) List all vehicles that appear in region R in the next

10 minutes.

2) Continuously mark the ten closest vehicles to gas

station number five.

These types of queries are not commonly supported by

traditional relational database engines. In order to facili-

tate these continuous spatial-temporal queries, a MOD

engine must implement the query processing and ideally,

with optimal performance at a low cost.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2. Related Works

Performance of the dynamic updates of the query result

set during the effective period is the main research topic

of MOD and spatial-temporal reasoning. In order to per-

form continuous query optimization in a distributed sys-

tem, not only the query cost must be minimized, the

communication cost for updating location information of

the terminal devices must also be minimized. However,

most of the previous works on continuous queries have

focused on reducing the query cost and has ignored the

communication cost [5-9], in which the occasions for

reporting location information are determined by the

terminal device at fixed intervals or when the object’s

location (constant distance interval) experiences a sig-

nificant change. This class of uniform time/distance in-

terval strategies has the following weaknesses:

1) The location updates are not adaptive to queries.

When queries are scarce or there are no queries at all, a

large amount of communication bandwidth and battery

power of the terminal device may be wasted on the up-

dates.

2) Low efficiency of queries could cause inconsistency

with reality. In the periodical update strategy, improving

the consistency of the query result with reality relies on

the location update frequency increase. This means higher

communication costs and may even make the improve-

ment impossible because of the bandwidth and network

delay limitation.

3) Unbalanced workload is applied on the server. In

order to improve the reality consistency, the server must

update large amounts of location information constantly

and recalculate all the queries. An overloaded server us-

ually means low responsiveness and poor reliability.

Hu, et al. [10] proposed a continuous query update

strategy based on a rectangular safe region (RSR) me-

thod which can alleviate the previous three problems.

However, with analysis and experiments, we found that

this strategy requires considerable computation power on

terminal devices. This performance bottleneck may be-

come more significant with a larger query load.

This project proposes an efficient indexing scheme

called SKR tree (Spatial Keyword Range tree), which

indexes both the textual and spatial contents of objects to

support data retrievals based on their combine textual and

spatial relevance, which, in turn, can be adjusted with

different relative weights. In fig.1structure of SKR tree

has nodes which have both spatial and non spatial

information of the data object.

Moreover, most of the previous studies only support

one specific query type, such as either range queries

kNN queries but not both. Our proposed DIBCSR algo-

rithm supports both range queries and kNN queries.

3. Safe Region Based Location Updates

Figure 1 demonstrates the infrastructure of a moving

object query system. The kernel of the system is the con-

trol center (the main server of the system) in the center of

the figure which runs the MOD engine, collects location

information, handles continues queries and provides query

results to the application servers to the right of the figure.

Therefore, the major computation workload is applied to

the main server/control center of a MOD system. For

simplicity, we refer to the main server/control center as

server in this paper.

Terminal devices, which are the monitored moving

objects, obtain their own location information from the

GPS system and transmit it to the server via a wireless

communication network. The whole system’s timeliness

and efficiency is affected by the wireless communication

bandwidth. The location information updates are often

the bottleneck because of the limited wireless bandwidth

and the high sampling rate in the traditional uniform

time/distance interval strategies.

The idea behind the rectangular safe region (RSR) al-

gorithm [10] is to define a rectangular safe region for

every object according to the registered query and the

latest location obtained. As long as the object’s motions

do not exceed its safe region, all the query result sets of

the object remain unchanged (Figure 2). The terminal

device is informed of the safe region assignments dy-

namically. Hence when a terminal device finds that it has

exceeded the safe region, it will report its new location

information. E.g., when an object a in Figure 2 has

moved out of its safe region of Sa to location a', it will

report its new location to the server which will recalcu-

late the results of a continuous k-nearest-neighbor (kNN)

query Q1 and a range query Q2.

Through analysis and experiments, we found that al-

though the RSR algorithm is effective, it has the follow-

ing weaknesses which can be improved:

1) RSR requires that the terminal device has memory

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

 o.maxspd

Figure 1. Infrastructure of the MOD system.

o.sr o

o.r

q

Figure 2. Rectangular safe region.

to store its current safe region and computing power to

determine whether it has exceeded the safe region.

However, in practice, many low-cost terminal devices

(e.g. a GPS dog collar) do not have memory and com-

puting power in addition to GPS satellites communica-

tion.

2) In RSR, data communication is bidirectional. The

terminal devices not only need to upload location infor-

mation to the server, but also need to download safe re-

gion information from the server. When the query fre-

quency increases, the frequency of safe region download

to the terminal devices increases. When the query fre-

quency is high enough, the communication cost may be

even worse than the uniform time interval (UTI) strategy.

We have a detailed analysis of this problem in Section 5.2.

3) Computations involved in the RSR strategy are

complicated, especially for kNN queries.

On the observation of these problems, we propose a

new continuous query algorithm. We define the safe re-

gion of object o (referred to as o.sr) as a circle with the

center at the location of the object and the radius of o.r

(Figure 3). Assume the maximum speed of the object is

o.maxspd, then the continuous query result of query q

will not be affected within the time interval of o.r/o.

maxspd. Hence the server can issue a location report

query to the terminal device at the time of (o.r/o.maxspd -

δ) where δ is the sum of communication and computation

delays.

In comparison, the advantages of our DIBCSR strat-

egy are:

1) The terminal device does not need to have any com-

Figure 3. Location update of a moving object with circular safe region

under continuous query.

puting power. The only task of the terminal device is to

report its location upon the request of the server. This is

determined by our main algorithm which is given in Sec-

tion 4.1. Moreover, the location update sampling re-

quests are distributed by the server. Therefore, when the

sampling strategy needs updating, such as when safe

regions are reassigned because of objects’ movements,

only the server is affected and the communication cost

will not be affected.

2) The algorithm determining the assignment of a cir-

cular safe region is simpler than a rectangular one. There-

fore the computation is reduced for safe region assign-

ments. We provide the detailed safe region assignment

algorithms for continuous range queries and continuous

kNN queries in Sections 4.2 and 4.3 respectively.

3) The updates of safe regions have been minimized

with the selection of circular shape safe regions and

therefore the communication cost is minimized. We pro-

vide mathematical analysis in Section 5.1.

4) The communication cost is reduced in comparison

with the RSR strategy. Detailed analysis of this feature is

provided in Section 5.2.

5) Computations involved in the RSR strategy are

complicated, especially for kNN queries. In contrast,

computations are much more concise in our DIBCSR

strategy.

4. Dynamic Interval Based Location Updates

We use C++/Java style pseudo code syntax, including

comment syntax of double slash, to represent the algo-

rithms in a more concisely and precisely. Properties of

the moving object o and continuous query q are ex-

plained in Table 1 and Table 2.

A separate process will be responsible for determina-

tion of the objects that are due for reporting new loca-

tions and sending the requests. The main algorithm

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)



U

Table 1. Properties of a moving object.

q.region Query region of a range query

q.result Query result set

q.effUTI the query effective period

o.circle.p the center of the circular query region

o.circle.r the radius of the circular query region

Table 2. Properties of a continuous query.

o.p Last reported object location

o.r Radius of the object safe region

o.sr Object safe region

o.maxspd Maximum speed of the moving object

o.upt Next location update time of the moving object

which runs on the server is as following:

Algorithm 1. Main algorithm for continuous query

processing:

//OList is the object list, QList is the query list

while (received query q and

current time t within q.effUTI)

do

{

if (q is newly registered) then

{

//new a query q for processing, either //range or kNN

query

NewQuery(q);

}

if (q is cancelled) then

remove q from QList;

if (q is location update of object o) then

{

//update safe region of object o and //related query re-

sult sets

UpdateSR(QList, o);

o.upt = t + o.r/o.maxspd - delay;

}

}

are supported by our strategy. A continuous range query

is one that returns all the objects in q.region within the

query effective period where query region can be either

rectangular or circular. A continuous kNN query is one

that returns the closest k objects to the query location. An

ordered kNN query requires the results to be returned in

increasing order and an unordered kNN query does not

request the results to be in order. An ordered kNN query

is what we will consider in this paper and which is more

complicated than an unordered kNN query. These two

different types of continuous queries require different

new query processing and location update processing

algorithms which we present in different sections as fol-

lows.

4.2. Continuous Range Queries

The query processing and location update algorithm for

continuous range queries are as follows:

Algorithm 2. SKR Tree
Ne ← 0

 For each p D do

 geo code p and represent Lp with MBB mp

 if for some e ← Ne, me = mp then

 add p to e’s dataset De;

 else

 create a new entry e;

 set me ← mp and De ← {p};

 Ne ←Ne U {e};

 End if

 End for

 For each e ← Ne do

 While 1Ne1> n max do

 Cluster the data according to min/max into nodes

 Ne ← Ne'

 End while

 End for

In a range query, the geo function in Algorithm 2 which

is the query result of safe region is defined as

UpdateSR(QList, o)

{

//range query location updates processing Update-

SRA(QList, o);

Y

Req  q, o.sr  


N



if RCC5  q.r, o.sr   PPI

if RCC5  q.r, o.sr   DC

otherwise

(1)

//kNN query location updates processing Update-

RSR(QList, o);

}

4.1. The Main Algorithm for Continuous Query
Processing

Both continuous range query and continuous kNN query

A return value of “Y” indicates that the safe region is

inside the query region and therefore object o is within

the result set. A return value of “N” indicates that the

safe region is outside of the query region and therefore

the object o is not included in the result set. A return

value of “U” indicates that the safe region intersects with

the query region. The result is therefore undecided.

Hence the precise location of the object needs to be ob-

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

5

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

tained in order to recalculate. The region connection cal-

culus (RCC) serves for qualitative spatial representation

and reasoning and RCC-5 is a widely used binary rela-

tionship model in automated spatial reasoning [11] with

five binary relationships {DC, PO, PP, EQ, PPI} (dis-

creteness, proper overlap, proper part, equivalence,

proper inclusion) demonstrated in Figure 4. The function

RCC5(X, Y) returns the RCC-5 relationship of X and Y

for topology analysis.

Algorithm 3. Range query update

//The functionality is to update the range query //result

set and check/update the object safe //region by invoking

the SafeRegion sub //function.

UpdateSRA(QList, o)

{

o.r = ;

X Y X Y X

Y

DC PO PP

X XY

Y

PPI EQ

Figure 4. Binary spatial relationships in RCC-5.

for (q  QList and q is a range query) do

{

// If safe region function returns r>0

// then o is within the result set of q

if SafeRegion(q, o, r) then{

q.result = q.result  {o};

return true;

}

}

}

Algorithm 4. The calculation of safe region for range

III

II

III

B II

A I

II

III
C

II

III

query

The purpose of this algorithm is to calculate the safe

region radius and decide the query result set. The safe

region radius r is returned for the object o under query q.

The Boolean return value of true or false indicates wheth-

er object o is within the query result set.

SafeRegion(q, o, & r)

{

if (q is a rectangular range query) then

{

//Three circumstances exist,

//as demonstrated in Figure 5.

//A: o.p is inside query region I

//B: o.p is inside query region II

//C: o.p is inside query region III

if (o.p is inside query region I) then

{

r = distance from o.p to the closest edge of the rectan-

gular query region;

return true;

}

else if (o.p is inside query region II) then

r = distance from o.p to the closest edge of the rectan-

gular query region;

else // o.p is inside query region III

r = distance from o.p to the closest vertex of the rec-

Figure 5. Rectangular range query safe region.

tangular query region;

return false;

}

else if (q is a circular range query) then

{

//Two circumstances exist,

//as demonstrated in Figure 6.

//A: object o is inside the

//circular query region

//B: object o is outside of the

//circular query region

doq= dist(o.p, q.circle.p);

//dist(a, b) represents the distance

//between point a and point b. doq is the //distance

between object o and query q.

r = ABS(doq - q.circle.r);

if (doq <= q.circle.r) then

return true;

else

return false;

}

}

Theorem 1: When the motion of the object in Algo-

rithm 4 does not exceed the safe region, the result set of

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

6

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

o1 B
o p

o

q

Figure 6. Circular range query safe region.

the continuous range query does not change.

Proof: Apparently, under the circumstance, o.sr does

if (dist(q, o1) – o1.r > dist(q, o2) + o2.r) then

return 1;

Query locations of o1, o2;

//Distances of safe regions to q overlaps, //query pre-

cise locations for further //comparison.

o1.r = 0;

o2.r = 0;

if (dist(q, o1) < dist(q, o2)) then

return –1;

else

return 1;

}

4.4. Circular Safe Region Calculation and

Updates for Continuous kNN Queries

Following is the formula to update the safe region radius

th

not intersect with q.r. Hence object o’s motion inside o.sr for the i object in the object set ascending sorted by

will not affect the query result set.

4.3. Continuous kNN Query

Algorithm 5. An ordered kNN query processing

NewQuery(q)

distance to ordered kNN query q in Algorithm 5. Figure

7 shows an example of safe regions assignment in such

an ordered kNN query q. The first object in the result set

is q and the extra object ok+1 is kept for calculation of

safe region radius of ok.

if 0  i  k , in the result set, then


 

 

//q is an ordered kNN query

{
 dist oi , oi 1 
min oi .r, ,

dist oi , oi 1 

1) Decide the object list OList near query location q.p oi .r    2 2  (2)

based on the spatial-temporal index of moving objects;

/*e.g. objects within neighboring rectangles can be se-

lected in an R*-tree indexed system. This step reduces

the object set that is processed to reduce the following

computation.*/

2) Perform sorting to the objects in OList by dist (o.p,

q.circle.p) ascending, the nearest k + 1objects are saved

in q.result;

/*Quick Sort algorithm is applied and the Compare

function is given below. The reason why we save the (k

+1)
th

object is for the calculation of the safe region.*/

3) Update the safe regions for all objects;

}

Algorithm 6. Distance comparison algorithm for ob-

jects

For simplicity, we use q to represent q.circle.p and

object names o1, o2 to represent the object location o1.p

and o2.p in this section.

// Function returns –1 when o1 is nearer than o2; // re-

turns 1 when o1 is farther than o2.

// Since all calculations are floating-point, we do // not

consider the equal scenario.

Compare (q, o1, o2)

{

if (dist(q, o1) + o1.r < dist(q, o2) – o2.r) then

return –1;

if i  k , out of the result set, then

min oi .r, dist oi , q  quar q 

where quar(q) is the radius of the quarantine region for

query q which surround and only surround the safe re-

gions of all objects in the result set. Therefore, quar(q) =

dist(ok, q) + ok. Figure 8 shows how such a quarantine

region is assigned for such an ordered kNN query q.

Hence we have the following property: either in or out of

the kNN query result set (inside or outside the quarantine

region), none of the safe regions of objects overlaps with

each other. Therefore, when all the objects are moving

inside their own safe regions, the result set and its order

are not affected.

4.5. Location Update Processing for Continuous

kNN Queries

For continuous kNN query, when object location is up-

dated, one of the four following scenarios will happen.

The detailed update algorithm is given in Algorithm 7:

1) Original location was inside the quarantine region

and new location is also inside the quarantine region:

order adjustment in the result set is necessary.

2) Original location was outside the quarantine region

but new location is inside the quarantine region: a new

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

7

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

 i

ok

q o1

oi

UpdateRSR(QList, o)

{

for (q  QList and q is a kNN query) do

{

if ((o  q.result and dist(o, q)  quar (q)) or (o 

q.result and dist(o,q) > quar (q))) then

{

Execute Algorithm 5;

//Processed as a new query

continue;

}

else if (o  q.result

and dist(o, q)  quar (q)) then

{

//Original result set of q is {oi| i = 1,···, k}, //if object

o’s original index is i and //index after the new sorting by

dist(q, o) //is i'

Execute Algorithm 5 within the range of

i  1, i,, i, i  1, when i  i

Figure 7. Safe regions assignment in an ordered kNN query.


1, i,, i, i  1, when i  i








quar(p)

o1

p ……

ok+1

ok

Use result set from Algorithm 5 to replace the respec-

tive subset in the original result set;

continue；
}

else //o  q.result and dist(o, q) > quar (q)

{

Adjust o.r following the Req function given by Equa-

tion (1);

continue;

}

}

}

5. Analysis and Experiment

5.1. Analysis of the Safe Region Shape

Figure 8. Quarantine region assignment for an ordered kNN

query.

query is necessary to recalculate the complete result set.

3) Original location was inside the quarantine region

but new location is outside the quarantine region: same

as 2).

Both original location and new location are outside the

quarantine region: only need to update the object’s safe

region.

Algorithm 7. Location update processing for kNN

query

//Purpose is to update safe region and result set

As previously mentioned in Section 3, one reason for

selecting the circular safe region shape is to minimize the

updates of safe regions and therefore the associated

communication cost. We further provide mathematical

analysis here.

In a safe region based strategy, the communication

cost of a location update is inversely proportional to the

minimum location update time. This is because the ob-

ject’s motion direction is generally unpredictable. There-

fore its probability of leaving the safe region through any

portion of the border is equal. Assume SR to be the safe

region, p to be the last reported location. If in the direc-

tion of , the distance from p to the edge of the safe re-

gion is k() (Figure 9), then the minimum location up-

date time is

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

8

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

SR

p
min(k())

k()



fit into a single frame, the location update rate is the

main factor affecting the communication cost. This loca-

tion update rate is constant for UTI strategy while varia-

ble for safe region based strategies. Assume in the RSR

strategy, the safe region update rate is s which depends

on the query rate of q. We therefore represent it using the

function of s(q) which increases with the query rate of q.

And assume the location update rate is u and the com-

munication delay is d. The total communication cost is

(s(q) + u)·d which increases with the query rate. Hence

when the query rate is high, the RSR strategy can be

even worse than the UTI which makes it not feasible.

In contrast, in our DIBSCR strategy, the terminal de-

vice does not need to download safe region information

Figure 9. Shape of the safe region. which only leaves the location update term of u·d.

Moreover, the location update rate r is most equal to the

constant rate in the UTI strategy because it is based on

1 cost
communication

timeupdate  min k   o.maxspd (3)

the dynamic time interval which is greater than or equal

Assuming o.maxspd is a property of the object that we

cannot control, our goal is to maximize the min(k()) in

order to maximize the tupdate. When a specific shape of

safe region is selected, increasing the area of the safe

to a preset value. We further provide the estimated loca-

tion update rate r in DIBSCR as following:

The basic estimate of the location update interval is

derived from Equation (3):

region is obviously going to increase min(k()). However,

in a range query or a kNN query, the largest area is

1 u tupdate  o.r o.maxspd (4)

eventually bounded by the objects’ distribution and the

size of the query region. Therefore, if we assume the area

of the safe region is determined, then the maximized

average distance from p to the edge of the safe region in

all directions, min(k()), will come with the isotropic

safe region – a circle.

5.2. Analysis of the Safe Region’s

Communication Cost

In the RSR strategy [10], data communication is bi-di-

rectional: the terminal devices upload location informa-

tion and download the safe region information. However,

the authors only discussed the communication cost of

location information upload, which is not precise. We

take the bi-directional data communication into consid-

eration in the following discussion and then compare the

communication cost with our DIBSCR strategy.

In the RSR strategy, communication in the down-link

where tupdate is the minimum amount of time the object
may exceed the circular safe region and therefore re-

quests a location update. The estimate of the location

update rate u is therefore relying on the estimate of the

object’s maximum speed o.maxspd.

The estimate of o.maxspd can be either fixed (for in-

stance the object types of pedestrian, motor vehicle or

high-speed train) or it could also be further refined by

prediction from the object’s historical locations. This

could reduce the communication cost when the object is

temporarily immobile (such as when the pedestrian

stopped by a coffee shop or when the motor vehicle is

parked). Certainly in any prediction based speed estimate,

we need to be on the conservative side and control the

computation cost although there are outstanding predic-

tion methods such as Back Propagation Networks (BPN).

For simplicity, we do not want to include consideration

of a missing rate. One possible conservative estimate is

o.maxspd  min  fixed _ max _ speed ,

direction from the server to the terminal device transmits
v  max _ acceleration * t  t 

information of the rectangular safe region, each deter-

mined by two points or four coordinates. Communication

where

last current last

in the up-link direction from the terminal device to the

server transmits a location update, each includes one

point or two coordinates. In newer wireless networks

such as Wi-Fi, Wi-Max or 3G, data is transmitted in data

frames (called synchronous transmissions mode). Since

the data amount to be transmitted/received by the ter-

minal device every time is quite small which can easily

fixed_max_speed: the maximum possible speed for an

object type

vlast: calculated speed at the last location report time

max_acceleration: the maximum possible acceleration

of an object type

tcurrent: the current system time

tlast: the last location report time.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

9

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

a

Either the o.maxspd is fixed or further bounded by a

prediction, it is tightly bounded and hence the minimum

amount of time the object may exceed the circular safe

region and the maximum location updated rate is tightly

bounded and independent of the query rate.

5.3. Experimental Analysis of the System

Performance

In order to further evaluate our strategy, we constructed a

simulation system to evaluate the UTI strategy, RSR

strategy and our DIBCSR strategy. In our simulation

system, object o’s motion direction and speed are ran-

domly generated. The object’s speed should not exceed a

fixed maximum speed of o.maxspd. In UTI simulation,

we have two location update intervals of 0.1s and 1s,

referred to as UTI(0.1) and UTI(1) respectively in the

simulation results.

In our experimental analysis through simulation, three

comparison criteria are applied: 1) precision, 2) commu-

nication cost and 3) server workload. We analyze the si-

mulation results separately in the following section.

1) Precision

The precision of a continuous query result is defined

as: at time t, the system query result is RESULT(t); the

actual object set that satisfies the query condition is

TRESULT(t), standing for the true result. In order to use

a higher value to represent higher precision, we define

the equal(x, y) function to return 1 when x = y and 0

when x ≠ y. In the time interval of [a, b], we average the

equality between the returned value and the true value,

and define precision as

Figure 10. Comparison of precision.

 1

equal  RESULT t  ,TRESULT t  dt

b  a
b

The precision is obviously affected by the communi-

cation delay since it causes the difference between the

actual location and the reported location. The result is

represented in Figure 10 and the precision of DIBCSR

and SBR are approximately the same and both are better

than UTI.

The simulation results shown in Figure 11 confirm

our analysis in Section 5.2 that the performance of DIBCSR

is significantly better (lower communication cost) than

RSR when considering bi-directional communication cost.

And at high query rate, communication cost of RSR can

be even worse than UTI with a larger time interval (low-

er sampling rate).

2) Communication cost

3) System scalability

Figure 12 shows the comparison of server workload

for different strategies under the query rate increase.

Since the workload is balanced better, both DIBCSR and

Figure 11. Comparison of communication cost.

RSR apply less workload on the server than UTI. Be-

cause we further simplified the safe region computation

by applying circular safe region, DIBCSR applies even

less workload than RSR on the server. This advantage is

more significant under the query rate increase. This low

server workload feature of DIBCSR helps to improve the

system scalability.

6. Conclusion

This paper analyzes the weaknesses of the RSR strategy

and proposes a DIBCSR strategy to replace the RSR

strategy for continuous queries in MOD. Theoretical

analysis and simulation experiment both show that the

new strategy has multiple advantages. Firstly, the new

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

10

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Figure 12. Comparison of server workload.

strategy does not require computation over the terminal

devices. Therefore, cost of the terminal devices is re-

duced under the precondition of equal or better system

performance. Secondly, terminal devices do not need to

download the safe region information from the server

which reduces the communication cost effectively. Fi-

nally, computation is simplified by applying circular safe

regions. Hence the server workload is reduced which

improves the system scalability. Possible future works of

the research include implementation of the strategy in an

applied MOD engine for a information system providing

LBS to public transportation, taxis and private vehicle

devices or pedestrians with hand-held mobile devices.

Application of our strategy potentially provides real-time

range queries and kNN queries to support LBS at a low

cost with a high performance in addition to system de-

sign and implementation ease and flexibility.

7. References

[1] S. I l ar ri, E . Me na a n d A . Il la rra men d i, “L oca -

tion-Dependent Query Processing: Where We Are and

Where We Are Heading,” ACM Computing Surveys, Vol.

42, No. 3, 2010, pp. 1-79. doi:10.1145/1670679.1670682

[2] H. D. Chon, D. Agrawal and A. El Abbadi, “Storage and

Retrieval of Moving Objects,” Proceedings of the 2nd

International Conference on Mobile Data Management,

Hong Kong, 8-10 January 2001, pp. 173-184.

[3] H. D. Chon, D. Agrawal and A. El Abbadi, “FATES:

Finding a Time Dependent Shortest Path,” Proceedings

of the 4th International Conference on Mobile Data Ma-

nagement, Melbourne, 21-24 January 2003, pp. 165-180.

[4] Y. Chen, F. Rao, X. Yu and D. Liu, “CAMEL: A Moving

Object Database Approach for Intelligent Location Aware

Services,” Lecture Notes in Computer Science, Vol. 2574,

2003, pp. 331-334. doi:10.1007/3-540-36389-0_23

[5] C. S. Jensen, D. Lin and B. C. Ooi, “Query and Update

Efficient B+-Tree Based Indexing of Moving Objects,”
Proceedings of the 30th International Conference on
Very Large Data Bases, Toronto, 29 August - 3 Septem-
ber 2004, pp. 768-779.

[6] M. F. Mokbel, X. Xiong and W. G. Aref, “SINA: Scala-

ble Incremental Processing of Continuous Queries in

Spatio-Temporal Databases,” Proceedings of the 2004

ACM SIGMOD International Conference on Manage-
ment of Data, Paris, 13-18 June 2004.

[7] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref and

S. E. Hambrusch, “Query Indexing and Velocity Cons-

trained Indexing: Scalable Techniques for Continuous

Queries on Moving Objects,” IEEE Transactions on

Computers, Vol. 51, No. 10, 2002, pp. 1124-1140.

doi:10.1109/TC.2002.1039840

[8] Y. Tao, D. Papadias and Q. Shen, “Continuous Nearest

Neighbor Search,” 28th International Conference on Very

Large Data Bases, Hong Kong, 20-23 August 2002.

doi:10.1016/B978-155860869-6/50033-0

[9] X. Yu, K. Q. Pu and N. Koudas, “Monitoring K-Nearest

Neighbor Queries over Moving Objects,” 21st Interna-

tional Conference on Data Engineering, Tokyo, 5-8 April

2005, pp. 631-642

[10] H. Hu, J. Xu and D.L. Lee, “A Generic Framework for

Monitoring Continuous Spatial Queries over Moving

Objects,” Proceedings of the 2005 ACM SIGMOD Inter-
national Conference on Management of Data, Baltimore,

13-16 June 2005. doi:10.1145/1066157.1066212

[11] D. A. Randell, A.G. Cohn and Z. Cui, “Computing Tran-

sitivity Tables: A Challenge for Automated Theorem

Provers,” Lecture Notes in Computer Science, Vol. 607,

1992, pp. 786-790.

