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ABSTRACT 

In reality, spatial objects (e.g., hotels) not only have 

spatial locations but also have quality attributes (e.g., star, price). 

An object p is said to dominate another one p', if p is no worse 

than p' with respect to every quality attribute and p is better on at 

least one quality attribute. Traditional spatial queries (e.g., 

nearest neighbor, closest pair) ignore quality attributes, whereas 

conventional dominance-based queries (e.g., skyline) neglect 

spatial locations. From this FDL (Farthest Dominated Location) 

retrieves the results, includes both quality attributes, and spatial 

objects with sufficient R-Tree algorithm to retrieve the data. For 

each query, location based server need to analyze query point 

and what the query needs to analyze from the database is large to 

store the data. For this, my project proposes a system include 

safe zone. This zone creates a circular zone with range for the 

query, location will be analyzed. This project proposes an 

efficient index called SKR-tree  

1. Introduction 
 

The development of technology has made it possible to 

track moving objects such as vehicles, aircrafts, vessels, 

wildlife, and human objects such as firefighters in a fire 

field. Technologies such as global positioning system 

(GPS), radio-frequency identification (RFID), cellular 

wireless networks (such as commercial cellular phone 

networks) and even triangulated wireless fidelity (Wi-Fi) 

networks can all provide location information in real- 

time, although at different precisions with different ef- 

fective ranges. 

Two major trends can be identified  to  manage  the 

large amount of location and property information that 

varies with time: moving object databases (MOD) and 

data stream technology (DST). The first approach im- 

plies extending traditional database techniques with 

models and index structures suitable to track the loca- 

tions of the moving objects efficiently. The second ap- 

proach focuses on the processing of continuous location 

updates as they arrive. The boundary between these two 

approaches is not always clear in relation to the topic of 

this survey: Both propose alternatives to classical data- 

base techniques, which are not considered appropriate to 

manage the continuously changing locations of the mov-- 

ing objects [1]. Our research will focus on the MOD ap- 

proach but can be easily modified to adapt to the DST 

approach as well since our Dynamic Interval Based Cir- 

cular Safe Region (DIBCSR) algorithm requires the 

minimum frequency of location updates which can be 

provided by both approaches. 

MOD is a system that performs storage management 

and query analysis on time-variable spatial information 

of moving objects [2-4] which combines multiple disci- 

plines and research areas including geographical infor- 

mation systems (GIS), spatial databases, spatial-temporal 

databases, computer graphics, computational geometry, 

artificial intelligence and mobile computing. 

Application of MOD requires the optimal efficiency of 

the queries which can only be provided by continuous 

spatial-temporal queries. A regular spatial-temporal query 

only returns a single result set. In contrast, a continuous 

spatial-temporal query returns result sets continuously 

from the registration to the cancellation of the query, 

which is called the effective period of the query. Even if 

the query conditions remain unchanged during the effect- 

tive period, the query result must be updated continu- 

ously due to the continuous movement of the queried 

objects. Here are two examples of continuous spatial- 

temporal queries which provide commonly used LBS  

such  as  range query or  the k-nearest neighbor (kNN) 

query: 

1) List all vehicles that appear in region R in the next 

10 minutes. 

2) Continuously mark the ten closest vehicles to gas 

station number five. 

These types of queries are not commonly supported by 

traditional relational database engines. In order to facili- 

tate these continuous spatial-temporal queries, a MOD 

engine must implement the query processing and ideally, 

with optimal performance at a low cost. 
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2. Related Works 
 

Performance of the dynamic updates of the query result 

set during the effective period is the main research topic 

of MOD and spatial-temporal reasoning. In order to per- 

form continuous query optimization in a distributed sys- 

tem,  not only the query cost  must be minimized, the 

communication cost for updating location information of 

the terminal devices must also be minimized. However, 

most of the previous works on continuous queries have 

focused on reducing the query cost and has ignored the 

communication  cost [5-9],  in which the occasions for 

reporting location information are determined by the 

terminal device at fixed intervals or when the object’s 

location (constant distance interval) experiences a sig- 

nificant change. This class of uniform time/distance in- 

terval strategies has the following weaknesses: 

1) The location updates are not adaptive to queries. 

When queries are scarce or there are no queries at all, a 

large amount of communication bandwidth and battery 

power of the terminal device may be wasted on the up- 

dates. 

2) Low efficiency of queries could cause inconsistency 

with reality. In the periodical update strategy, improving 

the consistency of the query result with reality relies on 

the location update frequency increase. This means higher 

communication costs and may even make the improve- 

ment impossible because of the bandwidth and network 

delay limitation. 

3) Unbalanced workload is applied on the server. In 

order to improve the reality consistency, the server must 

update large amounts of location information constantly 

and recalculate all the queries. An overloaded server us- 

ually means low responsiveness and poor reliability. 

Hu, et al. [10] proposed a continuous query update 

strategy based on a rectangular safe region (RSR) me- 

thod which can alleviate the previous three problems. 

However, with analysis and experiments, we found that 

this strategy requires considerable computation power on 

terminal devices. This performance bottleneck may be- 

come more significant with a larger query load. 

This project proposes an efficient indexing scheme 

called SKR tree (Spatial Keyword Range tree), which 

indexes both the textual and spatial contents of objects to 

support data retrievals based on their combine textual and 

spatial relevance, which, in turn, can be adjusted with 

different relative weights. In fig.1structure of SKR tree 

has nodes which have both spatial and non spatial 

information of the data object. 

Moreover, most of the previous studies only support 

one  specific  query  type,  such  as  either  range  queries 

kNN queries but not both. Our proposed DIBCSR algo- 

rithm supports both range queries and kNN queries. 
 

3. Safe Region Based Location Updates 
 
Figure 1 demonstrates the infrastructure of a  moving 

object query system. The kernel of the system is the con- 

trol center (the main server of the system) in the center of 

the figure which runs the MOD engine, collects location 

information, handles continues queries and provides query 

results to the application servers to the right of the figure. 

Therefore, the major computation workload is applied to 

the main server/control center of a MOD system. For 

simplicity, we refer to the main server/control center as 

server in this paper. 

Terminal devices, which are the monitored moving 

objects, obtain their own location information from the 

GPS system and transmit it to the server via a wireless 

communication network. The whole system’s timeliness 

and efficiency is affected by the wireless communication 

bandwidth. The location information updates are often 

the bottleneck because of the limited wireless bandwidth 

and the high sampling rate in the traditional uniform 

time/distance interval strategies. 

The idea behind the rectangular safe region (RSR) al- 

gorithm [10] is to define a rectangular safe region for 

every object according to the registered query and the 

latest location obtained. As long as the object’s motions 

do not exceed its safe region, all the query result sets of 

the object remain unchanged (Figure 2). The terminal 

device is informed of the safe region assignments dy- 

namically. Hence when a terminal device finds that it has 

exceeded the safe region, it will report its new location 

information. E.g., when an object a in Figure 2 has 

moved out of its safe region of Sa  to location a', it will 

report its new location to the server which will recalcu- 

late the results of a continuous k-nearest-neighbor (kNN) 

query Q1 and a range query Q2. 

Through analysis and experiments, we found that al- 

though the RSR algorithm is effective, it has the follow- 

ing weaknesses which can be improved: 

1) RSR requires that the terminal device has memory 
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Figure 1. Infrastructure of the MOD system. 
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Figure 2. Rectangular safe region. 

 
to store its current safe region and computing power to 

determine whether it has exceeded the safe region. 

However, in practice, many low-cost terminal devices 

(e.g. a GPS dog collar) do not have memory and com- 

puting power in addition to GPS satellites communica- 

tion. 

2) In RSR, data communication is bidirectional. The 

terminal devices not only need to upload location infor- 

mation to the server, but also need to download safe re- 

gion information from the server. When the query fre- 

quency increases, the frequency of safe region download 

to the terminal devices increases. When the query fre- 

quency is high enough, the communication cost may be 

even worse than the uniform time interval (UTI) strategy. 

We have a detailed analysis of this problem in Section 5.2. 

3)  Computations  involved  in  the  RSR  strategy  are 

complicated, especially for kNN queries. 

On the observation of these problems, we propose a 

new continuous query algorithm. We define the safe re- 

gion of object o (referred to as o.sr) as a circle with the 

center at the location of the object and the radius of o.r 

(Figure 3). Assume the maximum speed of the object is 

o.maxspd, then the continuous query result of query q 

will not be affected within the time interval of o.r/o. 

maxspd.  Hence  the  server  can  issue  a  location  report 

query to the terminal device at the time of (o.r/o.maxspd - 

δ) where δ is the sum of communication and computation 

delays. 

In comparison, the advantages of our DIBCSR strat- 

egy are: 

1) The terminal device does not need to have any com- 

 
 

 
 
 
 
 
Figure 3. Location update of a moving object with circular safe region 

under continuous query. 

 
puting power. The only task of the terminal device is to 

report its location upon the request of the server. This is 

determined by our main algorithm which is given in Sec- 

tion 4.1. Moreover, the location update sampling re- 

quests are distributed by the server. Therefore, when the 

sampling strategy needs updating, such as when safe 

regions are reassigned because of objects’ movements, 

only the server is affected and the communication cost 

will not be affected. 

2) The algorithm determining the assignment of a cir- 

cular safe region is simpler than a rectangular one. There- 

fore the computation is reduced for safe region assign- 

ments. We provide the detailed safe region assignment 

algorithms for continuous range queries and continuous 

kNN queries in Sections 4.2 and 4.3 respectively. 

3) The updates of safe regions have been minimized 

with the selection of circular shape safe regions and 

therefore the communication cost is minimized. We pro- 

vide mathematical analysis in Section 5.1. 

4) The communication cost is reduced in comparison 

with the RSR strategy. Detailed analysis of this feature is 

provided in Section 5.2. 

5) Computations involved in the RSR strategy are 

complicated, especially for kNN queries. In contrast, 

computations are much more concise in our DIBCSR 

strategy. 
 

4. Dynamic Interval Based Location Updates 
 
We use C++/Java style pseudo code syntax, including 

comment syntax of double slash, to represent the algo- 

rithms in a more concisely and precisely. Properties of 

the moving object o and continuous query q are ex- 

plained in Table 1 and Table 2. 

A separate process will be responsible for determina- 

tion of the objects that are due for reporting new loca- 

tions  and  sending  the  requests.  The main algorithm 
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Table 1. Properties of a moving object. 
 

q.region                         Query region of a range query 

q.result  Query result set 

q.effUTI the query effective period 

o.circle.p                  the center of the circular query region 

o.circle.r                   the radius of the circular query region 
 

 
Table 2. Properties of a continuous query. 

 
o.p                               Last reported object location 

o.r                             Radius of the object safe region 

o.sr                                      Object safe region 

o.maxspd                  Maximum speed of the moving object 
 

o.upt              Next location update time of the moving object 
 

 
which runs on the server is as following: 

Algorithm 1. Main algorithm for continuous query 

processing: 

//OList is the object list, QList is the query list 

while (received query q and 

current time t within q.effUTI) 

do 

{ 

if (q is newly registered) then 

{ 

//new a query q for processing, either //range or kNN 

query 

NewQuery(q); 

} 

if (q is cancelled) then 

remove q from QList; 

if (q is location update of object o) then 

{ 

//update safe region of object o and //related query re- 

sult sets 

UpdateSR(QList, o); 

o.upt = t + o.r/o.maxspd - delay; 

} 

} 

are supported by our strategy. A continuous range query 

is one that returns all the objects in q.region within the 

query effective period where query region can be either 

rectangular or circular. A continuous kNN query is one 

that returns the closest k objects to the query location. An 

ordered kNN query requires the results to be returned in 

increasing order and an unordered kNN query does not 

request the results to be in order. An ordered kNN query 

is what we will consider in this paper and which is more 

complicated than an unordered kNN query. These two 

different  types  of  continuous  queries  require  different 

new query processing and location update processing 

algorithms which we present in different sections as fol- 

lows. 

 
4.2. Continuous Range Queries 
 
The query processing and location update algorithm for 

continuous range queries are as follows: 

Algorithm 2. SKR Tree  
Ne ← 0 

    For each p  D do 

    geo code p and represent Lp with MBB mp 

    if for some e ← Ne, me = mp then 

        add p to e’s dataset De; 

    else 

         create a new entry e; 

              set me ← mp and De ← {p}; 

                  Ne ←Ne U {e}; 

              End if 

 End for 

 For each e ←  Ne do 

        While 1Ne1> n max do 

 Cluster the data according to min/max into nodes 

                 Ne ← Ne' 

         End while 

 End for  

In a range query, the geo function in Algorithm 2 which 

is the query result of safe region is defined as 

 

UpdateSR(QList, o) 

{ 

//range  query  location  updates  processing  Update- 

SRA(QList, o); 

 

Y 

Req  q, o.sr   
 

N 



if RCC5  q.r, o.sr   PPI 

if RCC5  q.r, o.sr   DC 

otherwise 

 
 
(1) 

//kNN  query  location  updates  processing  Update- 

RSR(QList, o); 

} 
 

4.1. The Main Algorithm for Continuous Query 
Processing 

 
Both continuous range query and continuous kNN query 

A return value of “Y” indicates that the safe region is 

inside the query region and therefore object o is within 

the result set. A return value of “N” indicates that the 

safe region is outside of the query region and therefore 

the object o is not included in the result set. A return 

value of “U” indicates that the safe region intersects with 

the  query  region.  The  result  is  therefore  undecided. 

Hence the precise location of the object needs to be ob- 
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tained in order to recalculate. The region connection cal- 

culus (RCC) serves for qualitative spatial representation 

and reasoning and RCC-5 is a widely used binary rela- 

tionship model in automated spatial reasoning [11] with 

five binary relationships {DC, PO, PP, EQ, PPI} (dis- 

creteness,   proper   overlap,   proper   part,   equivalence, 

proper inclusion) demonstrated in Figure 4. The function 

RCC5(X, Y) returns the RCC-5 relationship of X and Y 

for topology analysis. 

Algorithm 3. Range query update 

//The functionality is to update the range query //result 

set and check/update the object safe //region by invoking 

the SafeRegion sub //function. 

UpdateSRA(QList, o) 

{ 

o.r = ; 

 
X Y                   X           Y                           X 

Y 

 

 
 

DC                                PO                               PP 
 

 
X                                       XY 

Y 

 

 
PPI                                       EQ 

 
Figure 4. Binary spatial relationships in RCC-5. 

for (q  QList and q is a range query) do 

{ 

// If safe region function returns r>0 

// then o is within the result set of q 

if SafeRegion(q, o, r) then{ 

q.result = q.result  {o}; 

return true; 

} 

} 

} 

Algorithm 4. The calculation of safe region for range 
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query 

The purpose of this algorithm is to calculate the safe 

region radius and decide the query result set. The safe 

region radius r is returned for the object o under query q. 

The Boolean return value of true or false indicates wheth- 

er object o is within the query result set. 

SafeRegion(q, o, & r) 

{ 

if (q is a rectangular range query) then 

{ 

//Three circumstances exist, 

//as demonstrated in Figure 5. 

//A: o.p is inside query region I 

//B: o.p is inside query region II 

//C: o.p is inside query region III 

if (o.p is inside query region I) then 

{ 

r = distance from o.p to the closest edge of the rectan- 

gular query region; 

return true; 

} 

else if (o.p is inside query region II) then 

r = distance from o.p to the closest edge of the rectan- 

gular query region; 

else // o.p is inside query region III 

r = distance from o.p to the closest vertex of the rec- 

Figure 5. Rectangular range query safe region. 

 
tangular query region; 

return false; 

} 

else if (q is a circular range query) then 

{ 

//Two circumstances exist, 

//as demonstrated in Figure 6. 

//A: object o is inside the 

//circular query region 

//B: object o is outside of the 

//circular query region 

doq= dist(o.p, q.circle.p); 

//dist(a, b) represents the distance 

//between point a and point b. doq is the //distance 

between object o and query q. 

r = ABS(doq - q.circle.r); 

if (doq <= q.circle.r) then 

return true; 

else 

return false; 

} 

} 

Theorem 1: When the motion of the object in Algo- 

rithm 4 does not exceed the safe region, the result set of 
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o1                                                                                                             B 
o     p                                                       

o 

 
 
 

 
q 

 

 
 
 
 
 
 
 

Figure 6. Circular range query safe region. 

 
the continuous range query does not change. 

Proof: Apparently, under the circumstance, o.sr does 

if ( dist(q, o1) – o1.r > dist(q, o2) + o2.r ) then 

return 1; 

Query locations of o1, o2; 

//Distances of safe regions to q overlaps, //query pre- 

cise locations for further //comparison. 

o1.r = 0; 

o2.r = 0; 

if (dist(q, o1) < dist(q, o2) ) then 

return –1; 

else 

return 1; 

} 

 
4.4. Circular Safe Region Calculation and 

Updates for Continuous kNN Queries 
 
Following is the formula to update the safe region radius 

th
 

not intersect with q.r. Hence object o’s motion inside o.sr for the i object in the object set ascending sorted by 

will not affect the query result set. 

 
4.3. Continuous kNN Query 

 
Algorithm 5. An ordered kNN query processing 

NewQuery(q) 

distance to ordered kNN query q in Algorithm 5. Figure 

7 shows an example of safe regions assignment in such 

an ordered kNN query q. The first object in the result set 

is q and the extra object ok+1  is kept for calculation of 

safe region radius of ok. 

if 0  i  k , in the result set, then 
       

        

  

                   

//q is an ordered kNN query 

{ 
                dist oi , oi 1 
min oi .r,                     , 

dist oi , oi 1 

1) Decide the object list OList near query location q.p oi .r         2                    2          (2) 

based on the spatial-temporal index of moving objects; 

/*e.g. objects within neighboring rectangles can be se- 

lected in an R*-tree indexed system.    This step reduces 

the object set that is processed to reduce the following 

computation.*/ 

2) Perform sorting to the objects in OList by dist (o.p, 

q.circle.p) ascending, the nearest k + 1objects are saved 

in q.result; 

/*Quick Sort algorithm is applied and the Compare 

function is given below. The reason why we save the (k 

+1)
th 

object is for the calculation of the safe region.*/ 

3) Update the safe regions for all objects; 

} 

Algorithm 6. Distance comparison algorithm for ob- 

jects 

For simplicity, we use q to represent q.circle.p and 

object names o1, o2 to represent the object location o1.p 

and o2.p in this section. 

// Function returns –1 when o1 is nearer than o2; // re- 

turns 1 when o1 is farther than o2. 

// Since all calculations are floating-point, we do // not 

consider the equal scenario. 

Compare (q, o1, o2) 

{ 

if ( dist(q, o1) + o1.r < dist(q, o2) – o2.r ) then 

return –1; 

if i  k , out of the result set, then 

min oi .r, dist oi , q  quar q 

where quar(q) is the radius of the quarantine region for 

query q which surround and only surround the safe re- 

gions of all objects in the result set. Therefore, quar(q) = 

dist(ok, q) + ok. Figure 8 shows how such a quarantine 

region is assigned for such an ordered kNN query q. 

Hence we have the following property: either in or out of 

the kNN query result set (inside or outside the quarantine 

region), none of the safe regions of objects overlaps with 

each other. Therefore, when all the objects are moving 

inside their own safe regions, the result set and its order 

are not affected. 

 
4.5. Location Update Processing for Continuous 

kNN Queries 
 
For continuous kNN query, when object location is up- 

dated, one of the four following scenarios will happen. 

The detailed update algorithm is given in Algorithm 7: 

1) Original location was inside the quarantine region 

and new location is also inside the quarantine region: 

order adjustment in the result set is necessary. 

2) Original location was outside the quarantine region 

but new location is inside the quarantine region: a new 
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 i 

 
 
 
 
 
 

 
ok 

 
 
 
 
 

q                       o1 

 
 
 

oi 

UpdateRSR(QList, o) 

{ 

for ( q  QList and q is a kNN query ) do 

{ 

if ((o  q.result and dist(o, q)  quar (q)) or (o 

q.result and dist(o,q) > quar (q))) then 

{ 

Execute Algorithm 5; 

//Processed as a new query 

continue; 

} 

else if (o  q.result 

and dist(o, q)  quar (q)) then 

{ 

//Original result set of q is {oi| i = 1,···, k}, //if object 

o’s original index is i and //index after the new sorting by 

dist(q, o) //is i' 

Execute Algorithm 5 within the range of 

i  1, i,, i, i  1, when i  i 
 

Figure 7. Safe regions assignment in an ordered kNN query. 
     

1, i,, i, i  1,  when i  i








quar(p) 
 

 
 
 
 
 

o1 

p                        …… 

 
 

 
ok+1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
ok 

 

Use result set from Algorithm 5 to replace the respec- 

tive subset in the original result set; 

continue； 
} 

else //o  q.result and dist(o, q) > quar (q) 

{ 

Adjust o.r following the Req function given by Equa- 

tion (1); 

continue; 

} 

} 

} 
 

5. Analysis and Experiment 
 

5.1. Analysis of the Safe Region Shape 
 
 
 

 
Figure 8. Quarantine region assignment for an ordered kNN 

query. 

 
query is necessary to recalculate the complete result set. 

3) Original location was inside the quarantine region 

but new location is outside the quarantine region: same 

as 2). 

Both original location and new location are outside the 

quarantine region: only need to update the object’s safe 

region. 

Algorithm  7.  Location  update  processing  for  kNN 

query 

//Purpose is to update safe region and result set 

As previously mentioned in Section 3, one reason for 

selecting the circular safe region shape is to minimize the 

updates of safe regions and therefore the associated 

communication cost. We further provide mathematical 

analysis here. 

In a safe region based  strategy,  the  communication 

cost of a location update is inversely proportional to the 

minimum location update time. This is because the ob- 

ject’s motion direction is generally unpredictable. There- 

fore its probability of leaving the safe region through any 

portion of the border is equal. Assume SR to be the safe 

region, p to be the last reported location. If in the direc- 

tion of , the distance from p to the edge of the safe re- 

gion is k() (Figure 9), then the minimum location up- 

date time is 
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SR 

 
 

p 
min(k()) 

 
 
 

 
k() 

 


fit into a single frame, the location update rate is the 

main factor affecting the communication cost. This loca- 

tion update rate is constant for UTI strategy while varia- 

ble for safe region based strategies. Assume in the RSR 

strategy, the safe region update rate is s which depends 

on the query rate of q. We therefore represent it using the 

function of s(q) which increases with the query rate of q. 

And assume the location update rate is u and the com- 

munication delay is d. The total communication cost is 

(s(q) + u)·d which increases with the query rate. Hence 

when the query rate is high, the RSR strategy can be 

even worse than the UTI which makes it not feasible. 

In contrast, in our DIBSCR strategy, the terminal de- 

vice does not need to download safe region information 

Figure 9. Shape of the safe region. which  only  leaves  the  location  update  term  of  u·d. 

Moreover, the location update rate r is most equal to the 

constant rate in the UTI strategy because it is based on
 

1 cost 
communication 

timeupdate   min k   o.maxspd (3) 
 

the dynamic time interval which is greater than or equal 

Assuming o.maxspd is a property of the object that we 

cannot control, our goal is to maximize the min(k()) in 

order to maximize the tupdate. When a specific shape of 

safe region is selected, increasing the area of the safe 

to a preset value. We further provide the estimated loca- 

tion update rate r in DIBSCR as following: 

The basic estimate of the location update interval is 

derived from Equation (3): 

region is obviously going to increase min(k()). However, 

in a range query or a kNN query, the largest area is 

1 u tupdate   o.r o.maxspd (4) 

eventually bounded by the objects’ distribution and the 

size of the query region. Therefore, if we assume the area 

of the safe region is determined, then the maximized 

average distance from p to the edge of the safe region in 

all  directions,  min(k()), will  come  with  the  isotropic 

safe region – a circle. 

 
5.2. Analysis of the Safe Region’s 

Communication Cost 
 

In the RSR strategy [10], data communication is bi-di- 

rectional: the terminal devices upload location informa- 

tion and download the safe region information. However, 

the authors only discussed the communication cost of 

location information upload, which is not precise. We 

take the bi-directional data communication into consid- 

eration in the following discussion and then compare the 

communication cost with our DIBSCR strategy. 

In the RSR strategy, communication in the down-link 

where tupdate  is the minimum amount of time the object 
may exceed the circular safe region and therefore re- 

quests a location update. The estimate of the location 

update rate u is therefore relying on the estimate of the 

object’s maximum speed o.maxspd. 

The estimate of o.maxspd can be either fixed (for in- 

stance the object types of pedestrian, motor vehicle or 

high-speed train) or it could also be further refined by 

prediction  from  the  object’s  historical  locations.  This 

could reduce the communication cost when the object is 

temporarily immobile (such as when the pedestrian 

stopped by a coffee shop or when the motor vehicle is 

parked). Certainly in any prediction based speed estimate, 

we need to be on the conservative side and control the 

computation cost although there are outstanding predic- 

tion methods such as Back Propagation Networks (BPN). 

For simplicity, we do not want to include consideration 

of a missing rate. One possible conservative estimate is 

o.maxspd  min  fixed _ max _ speed , 

direction from the server to the terminal device transmits 
v     max _ acceleration * t  t    

information of the rectangular safe region, each deter- 

mined by two points or four coordinates. Communication 
 
where 

last                                                                  current        last 

in the up-link direction from the terminal device to the 

server  transmits  a  location  update,  each  includes  one 

point  or  two  coordinates.  In  newer  wireless  networks 

such as Wi-Fi, Wi-Max or 3G, data is transmitted in data 

frames (called synchronous transmissions mode). Since 

the data amount to be transmitted/received by the ter- 

minal device every time is quite small which can easily 

fixed_max_speed: the maximum possible speed for an 

object type 

vlast: calculated speed at the last location report time 

max_acceleration: the maximum possible acceleration 

of an object type 

tcurrent: the current system time 

tlast: the last location report time. 
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a 

Either the o.maxspd is fixed or further bounded by a 

prediction, it is tightly bounded and hence the minimum 

amount of time the object may exceed the circular safe 

region and the maximum location updated rate is tightly 

bounded and independent of the query rate. 

 
5.3. Experimental Analysis of the System 

Performance 
 

In order to further evaluate our strategy, we constructed a 

simulation system to evaluate the UTI strategy, RSR 

strategy and our DIBCSR strategy. In our simulation 

system, object o’s motion direction and speed are ran- 

domly generated. The object’s speed should not exceed a 

fixed maximum speed of o.maxspd. In UTI simulation, 

we have two location update intervals of 0.1s and 1s, 

referred to as UTI(0.1) and UTI(1) respectively in the 

simulation results. 

In our experimental analysis through simulation, three 

comparison criteria are applied: 1) precision, 2) commu- 

nication cost and 3) server workload. We analyze the si- 

mulation results separately in the following section. 

1) Precision 

The precision of a continuous query result is defined 

as: at time t, the system query result is RESULT(t); the 

actual object set that satisfies the query condition is 

TRESULT(t), standing for the true result. In order to use 

a higher value to represent higher precision, we define 

the equal(x, y) function to return 1 when x = y and 0 

when x ≠ y. In the time interval of [a, b], we average the 

equality between the returned value and the true value, 

and define precision as 

 

 
 

Figure 10. Comparison of precision. 

 

   1   
 

equal  RESULT t  ,TRESULT t  dt
 

b  a 
b 

 

The precision is obviously affected by the communi- 

cation delay since it causes the difference between the 

actual location and the reported location. The result is 

represented in Figure 10 and the precision of DIBCSR 

and SBR are approximately the same and both are better 

than UTI. 

The simulation results shown in Figure 11 confirm 

our analysis in Section 5.2 that the performance of DIBCSR 

is significantly better (lower communication cost) than 

RSR when considering bi-directional communication cost. 

And at high query rate, communication cost of RSR can 

be even worse than UTI with a larger time interval (low- 

er sampling rate). 

2) Communication cost 

3) System scalability 

Figure 12 shows the comparison of server workload 

for different strategies under the query rate increase. 

Since the workload is balanced better, both DIBCSR and 

 

 
 
 

Figure 11. Comparison of communication cost. 

 
RSR apply less workload on the server than UTI. Be- 

cause we further simplified the safe region computation 

by applying circular safe region, DIBCSR applies even 

less workload than RSR on the server. This advantage is 

more significant under the query rate increase. This low 

server workload feature of DIBCSR helps to improve the 

system scalability. 
 

6. Conclusion 
 
This paper analyzes the weaknesses of the RSR strategy 

and  proposes a  DIBCSR  strategy  to  replace  the  RSR 

strategy for continuous queries in MOD. Theoretical 

analysis and simulation experiment both show that the 

new strategy has multiple advantages. Firstly, the new 
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Figure 12. Comparison of server workload. 

 
strategy does not require computation over the terminal 

devices. Therefore, cost of the terminal devices is re- 

duced under the precondition of equal or better system 

performance. Secondly, terminal devices do not need to 

download the safe region information from the server 

which reduces the communication cost effectively. Fi- 

nally, computation is simplified by applying circular safe 

regions. Hence the server workload is reduced which 

improves the system scalability. Possible future works of 

the research include implementation of the strategy in an 

applied MOD engine for a information system providing 

LBS to public transportation, taxis and private vehicle 

devices or pedestrians with hand-held mobile devices. 

Application of our strategy potentially provides real-time 

range queries and kNN queries to support LBS at a low 

cost with a high performance in addition to system de- 

sign and implementation ease and flexibility. 
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